High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

نویسندگان

  • Lucian Ivan
  • Hans De Sterck
  • A. Susanto
  • Clinton P. T. Groth
چکیده

A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubedsphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with highorder accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Central ENO Finite-Volume Scheme for MHD on Three-Dimensional Cubed-Sphere Grids

A high-order central essentially non-oscillatory (CENO) finite-volume scheme is developed for the compressible ideal magnetohydrodynamics (MHD) equations solved on threedimensional (3D) cubed-sphere grids. The proposed formulation is an extension to 3D geometries of a recent high-order MHD CENO scheme developed on two-dimensional (2D) grids. The main technical challenge in extending the 2D meth...

متن کامل

Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids

A scalable parallel and block-adaptive cubed-sphere grid simulation framework is described for solution of hyperbolic conservation laws in domains between two concentric spheres. In particular, the Euler and ideal magnetohydrodynamics (MHD) equations are considered. Compared to existing cubed-sphere grid algorithms, a novelty of the proposed approach involves the use of a fully multi-dimensiona...

متن کامل

A Fourth-Order Solution-Adaptive CENO Scheme for Space-Physics Flows on Three-Dimensional Multi-Block Cubed-Sphere Grids

A high-order central essentially non-oscillatory (CENO) finite-volume scheme in combination with a block-based adaptive mesh refinement (AMR) algorithm is proposed for solution of hyperbolic conservation laws on three-dimensional cubed-sphere grids. In particular, the fluid flows of interest are governed by the compressible form of Euler and ideal magnetohydrodynamics (MHD) equations and pertai...

متن کامل

High-Order Finite-Volume Transport on the Cubed Sphere: Comparison between 1D and 2D Reconstruction Schemes

This paper presents two finite-volume (FV) schemes for solving linear transport problems on the cubedsphere grid system. The schemes are based on the central-upwind finite-volume (CUFV) method, which is a class of Godunov-type method for solving hyperbolic conservation laws, and combines the attractive features of the classical upwind and central FV methods. One of the CUFV schemes is based on ...

متن کامل

Convergence of a Finite Volume Extension of the Nessyahu–tadmor Scheme on Unstructured Grids for a Two-dimensional Linear Hyperbolic Equation∗

Abstract. The nonoscillatory central difference scheme of Nessyahu and Tadmor is a Godunovtype scheme for one-dimensional hyperbolic conservation laws in which the resolution of Riemann problems at the cell interfaces is bypassed thanks to the use of the staggered Lax–Friedrichs scheme. Piecewise linear MUSCL-type (monotonic upstream-centered scheme for conservation laws) cell interpolants and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 282  شماره 

صفحات  -

تاریخ انتشار 2015